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Tutorial outline
Overview of challenges and methods 

• Problem definition and applications

• Overview of anomaly detection approaches

• Shallow vs deep methods

Shallow anomaly detection models

• Distance/Density/Histogram/PCA-based models

• Isolation-based models

• Code demonstration

Deep anomaly detection models

• The modeling and supervision information  

• Anomaly explanation in deep detectors 

• Code demonstration

Future opportunities

Practical advices
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Code for demonstration:
https://github.com/zhuye88/TAD

https://github.com/yzhao062/pyod

https://sites.google.com/site/gspangsite/sourcecode

https://github.com/IsolationKernel/Codes

https://github.com/zhuye88/TAD
https://github.com/yzhao062/pyod
https://sites.google.com/site/gspangsite/sourcecode
https://github.com/IsolationKernel/Codes


Part 1: Overview of 
Challenges and Methods

• Problem definition and applications

• Challenges

• Overview of anomaly detection approaches

• Deep vs. shallow methods
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What are Anomalies?

• Anomalies (a.k.a., outliers, novelties): Points that are significantly different 
from most of the data
✓Rare
✓ Irregular

Source: 
Wikipedia
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Binary Output versus scoring

• Binary output generates a yes/no tag

• Preferable and more general: Scoring output generates a real-valued score or rank

Multiple ways to define what makes an anomaly different
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• A point anomaly is a single anomalous point. 

• A group anomaly can be a cluster of anomalies or some
series of related points that are anomalous under the 
joint series distribution.

• A contextual point anomaly occurs if a point deviates in 
its local context, here a spike in an otherwise normal
time series. 

• A low-level sensory anomaly deviates from the low-
level features

• A semantic anomaly deviates in high-level factors of 
variation or semantic concepts

Types of Anomalies?



Real-World Application Domains
Cybersecurity: 

attacks, malware, malicious 
apps/URLs, biometric spoofing

Finance: 
credit card/insurance frauds, market 
manipulation, money laundering, etc.

Video Surveillance: 
criminal activities, road 
accidents, violence, etc.

fighting             road accident

shooting shoplifting

Industrial Inspection: 
Defects, micro-cracks

Social Network and Web Security:
false/malicious accounts, 

false/hate/toxic information
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Healthcare: 
lesions, tumours, events in 

IoT/ICU monitoring, etc.

Image source: UCF-Crime data, MVTec AD data, etc.



Scientific Application Domains

Material Science: 
exceptional molecule graphs

Drug Discovery: 
rare active substances

High-Energy Physics: 
Higgs boson particles 

Rover-Based Space Exploration: 
unknown textures

Astronomy: 
Anomalous events 

9



Application-Specific Complexities

Four key complexities
Heterogeneity

• Different anomalies may exhibit completely different 
expressions, e.g., accidents, robbery vs. explosion events

Application-specific methodologies 

• Different methodologies required by different 
application-specific definitions, e.g., credit card frauds 
(point anomalies) vs malicious accounts in social media 
(group anomalies)

Unknown Nature (unsupervised setting)

• Anomalies remain unknown until they actually occur
Coverage

• Difficult to collect data covering all  classes of anomalies

Source: Wikipedia, UCF-Crime
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Explosion

Accidents

Robbery



Key Challenges

Challenge #1: Low Anomaly Detection Accuracy

• Rareness and heterogeneity of anomalies in a dataset

• Many returned anomalies are noise or uninteresting instances

Challenge #2: Contextual and High-Dimensional Data

• Anomalies are visible only in context of implicit relations in temporal, spatial and graph data

• Increased dimensionality also makes anomaly detection difficult

Challenge #3: Sample-Efficient Learning

• Building generalized detection models with a limited amount of labeled anomaly data

11



Key Challenges

Challenge #4: Noise-Resilient Anomaly Detection

• Data may contain normal and anomalous instances with no labels (anomaly contamination)

• Data may contain weak supervision information: 

Coarse anomaly labels such as leveraging video-level labels to detect anomalous frames

Challenge #5: Complex Anomalies

• Conditional/group anomalies

• Multi-modal anomalies

Challenge #6: Anomaly Explanation

• Obtaining cues about why a specific instance is detected anomalies by specific methods

• Balancing interpretability and detection accuracy

12
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Overview of Anomaly Detection Approaches

Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft, M., Dietterich, T.G. and Müller, K.R., 2021. A unifying review of deep and shallow anomaly 
detection. Proceedings of the IEEE, 109(5), pp.756-795.
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Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft, M., Dietterich, T.G. and Müller, K.R., 2021. A unifying review of deep and shallow anomaly 
detection. Proceedings of the IEEE, 109(5), pp.756-795.

Deep feature maps



Traditional (Shallow) Methods and Disadvantages

Statistical/probabilistic-based approaches
• Statistical test-based, depth-based, deviation-based 

Proximity-based approach
• Distance-based, density-based, clustering-based

Shallow ML Models
• Construct an unsupervised  (one-class) analog of a supervised ML model such as the SVM
• Use unsupervised dimensionality reduction methods, PCA, kernel PCA

Others
• Information-theoretic, subspace methods

Weaknesses
• Weak capability of capturing intricate relationships
• Lots of hand-crafting of algorithms and features [ad hoc]

• Ad hoc nature makes it difficult to incorporate supervision seamlessly

15



Advantages of Deep Learning

Integrates feature learning and anomaly scoring

• Generates newly learned feature space → A uninformative and primitive feature 
representations [e.g., image pixels]

• End-to-end learning → Can simultaneously learn features and relevant anomaly 
scores [no hand-crafting of features]

• Strong feature learning  → Captures intricate relations [e.g., mid-level image features

• Diverse neural architectures → Tailor to complex domains [e.g., RNN for time-series]

• Unified detection and explanation of anomalies → Better anomaly explanation 
guaranteed by integration of detection and localization

• Anomaly-informed models with improved accuracy  →Naturally integrates with 
labeled data (easy to navigate spectrum of supervised and unsupervised models)

16



Deep vs Shallow [Traditional]: Example  

Deep Method - Autoencoder Shallow Method – iForest

17



Deep vs. Shallow [Representation]
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Deep methods Shallow methods

Feature space Expressive new space Primitive space



Deep vs. Shallow: [Algorithm Type]
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Deep methods Shallow methods

Feature space Expressive new space Primitive space

Anomaly detection algo. Defined by NN structure Heuristic or ad hoc



Deep vs. Shallow [Feature Relations]
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Deep methods Shallow methods

Feature space Expressive new space Primitive space

Anomaly detection algo. Defined by NN structure Heuristic or ad hoc 

Feature relations captured Intricate Simple



Deep vs. Shallow [Feature Learning 
Methods for Diverse Data Types] 
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Deep methods Shallow methods

Feature space Expressive new space Primitive space

Anomaly detection algo. Defined by NN structure Heuristic or ad hoc

Feature relations captured Intricate Simple

Extracting features in 
diverse types of data

Varying on architectures and 
loss functions [e.g., RNN, 
CNN]

Hand-crafted feature 
extractors/off-the-shelf 
methods

MLP, CNN, RNN, GNN, etc. vs. random projection, PCA, subgraph patterns, optical flow, etc. 



Deep vs. Shallow Methods [Explanation]

22

Deep methods Shallow methods

Feature space Expressive new space Primitive space

Anomaly detection algo. Defined by NN structure Heuristic  or ad hoc

Feature relations captured Intricate Simple

Extracting features in 
diverse types of data

Varying on architectures and  
loss functions [e.g., RNN, 
CNN]

Hand-crafted feature 
extractors/off-the-shelf 
methods

Unified anomaly detection 
and explanation 

Yes No



Part 2: Shallow anomaly 
detection models

23

• Distance/Density-based methods

• Histogram-based method

• Principal Component Analysis

• Isolation-based methods
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Nearest Neighbour (kNN) approach
• For each data point d compute the distance to the k-th

nearest neighbour dk

• Sort all data points according to the distance dk

• Outliers are points that have the largest distance dk

• and therefore, are located in the sparser neighbourhoods
• Usually, data points that have distance dk higher than a

threshold are identified as outliers
• Not suitable for datasets that have modes with varying

density

Distance-based method

Ramaswamy, S., Rastogi, R. and Shim, K., 2000, May. Efficient algorithms for mining outliers from large data sets.  ACM Sigmod
Record, 29(2), pp. 427-438.
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Local Outlier Factor (LOF)
• Compute the average of the ratios of the density of each point and the 

density of its nearest neighbors
• Outliers are points with largest ratio value neighbourhoods
• Able to detect local anomalies

Many variants have been proposed to to
improve efficiency, accuracy and robustness 
of LOF, such as CBLOF, LDCOF and LDOF. 

Density-based method

Breunig, M.M., Kriegel, H.P., Ng, R.T. and Sander, J., 2000, May. LOF: identifying density-based local outliers.  ACM Sigmod Record, 29(2), pp. 93-104.



Histogram-based method

Assume each feature is independent; estimate the histograms separately and combine

Advantages: simple to use; easy to be distributed; suited for large-scale problem

Disadvantages: cannot capture complex feature dependency, while it works well in general 
Decision boundary

Low density region

Goldstein, M. and Dengel, A., 2012. Histogram-based outlier score (hbos):  A fast unsupervised anomaly detection algorithm. In KI-2012: Poster and Demo Track, pp.59-63.
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• Calculating eigenvectors using all samples, where 
outliers are far from the eigenvectors. This distance 
can be used as the outlier score.

• Advantages: easy to understand; moderate 
running time

• Disadvantages: as a linear model, it could not 
model complex results.

Principal Component Analysis (PCA)



Isolation Forest
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The Isolation Forest ‘isolates’ observations (subsample) by randomly selecting a feature and then 

randomly selecting a split value between the maximum and minimum values of the selected feature.

𝑆𝑐𝑜𝑟𝑒 𝒙 =
1

𝑡
෍

𝑖=1

𝑡

ℓ𝑖 𝒙 where ℓ𝑖 𝒙 is the path length of test point 𝒙 traversed in tree 𝑖.

Liu F.T., Ting K.M. and Zhou Z.H. (2008) Isolation Forest, In Proceedings of IEEE ICDM, p:413–422.



Isolation Forest (cont.)
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Source: Liu et al. 2008



Isolating partitions

• Large in sparse regions and small in dense regions

• Adapt to local data distribution

• This characteristic is important not only for point anomaly detection, but also 
for deriving data dependent kernels (to be described later).

30
Qin, X., Ting, K. M., Zhu, Y., & Lee, V. C. (2019, July). Nearest-neighbour-induced isolation similarity and its impact on density-based 

clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 4755-4762).



Isolation mechanism comparison
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Source: Tharindu et al 2018

iNNE

Bandaragoda, T.R., Ting, K.M., Albrecht, D., Liu, F.T., Zhu, Y. and Wells, J.R., 2018. Isolation‐based anomaly detection using 

nearest‐neighbor ensembles. Computational Intelligence, 34(4), pp.968-998.

Algorithm iForest iNNE

Partition shape hyper-rectangles hyper-spheres

Anomaly score average measure over t 
path lengths

average measure over t 
radiuses of hyper-sphere

Parameters Ψ – number of partitioning cells 
t – number of sets of partitionings

iNNE: each region is a hypersphere defined with a center represented 
by an instance from the subsample, and its boundary is defined by the 
distance to the nearest neighbor (NN) of the instance at the center.



iForest versus iNNE
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6 red anomalies

iForest contour

iNNE contour

Source: Tharindu et al 2018
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Example handwritten digits: MNIST
top 2 anomalies per digit

iForest iNNE
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Example handwritten digits: MNIST
bottom 2 anomalies (most typical example) per digit

iForest iNNE



Isolation-based methods are 
beyond point anomaly detection

Since the idea of Isolation was conceived, it was never confine to point 
anomaly detection only.

Two notable recent developments:

• Isolation Kernel (IK): A data dependent kernel which has a unique 
characteristic: two points, as measured by IK derived with a dataset in a 
sparse region, are more similar than the same two points, as measured by 
IK derived with a dataset in a dense region.

• Isolation Distributional Kernel (IDK) measures the similarity of two 
distributions, based on the framework of kernel mean embedding.

35



Isolation Kernel Calculation (NN-Voronoi 
Diagram)

……

We can use a nearest neighbour method to split a data space into 8 non-overlapping partitions, 
and independently conduct this partitioning strategy for t=100 trials. If two points 𝐱 and 𝐲 are 
located in the same partition (sharing the same nearest subsample point) in 25 out of 100 trials, 
then the similarity between 𝐱 and 𝐲 is estimated as 0.25, i.e., 𝐾8 (𝐱, 𝐲|𝐷) = 0.25.

x    y x    y x    y x    y

36



Isolation Kernel Feature Map
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Φ 𝐱 is a binary vector that represents the partitions in all the partitionings, where x falls in to 
only one of 𝜓 cells in each partitioning.

Φ 𝐱 - > [0 1 0 0 0 0 0 0        1 0 0 0 0 0 0 0                 1 0 0 0 0 0 0 0        ……                1 0 0 0 0 0 0 0]
Φ 𝒚 - > [1 0 0 0 0 0 0 0        1 0 0 0 0 0 0 0                 1 0 0 0 0 0 0 0        ……                1 0 0 0 0 0 0 0]

𝐾𝜓 𝐱, 𝒚|𝐷 =
1

𝑡
< Φ 𝐱 , Φ 𝒚 ) >

……

x    y x    y x    y x    y
Cell 1

Cell 2
Cell 1 Cell 1 Cell 1



Point-Set Kernel

Given a point 𝐱 and a set 𝐴 = {𝐲𝑖}𝑖=1
𝑝

, and 𝐱, 𝐲𝐢 ∈ 𝑅𝑑 , the point-set 
similarity between 𝐱 and 𝐴 is the average pairwise similarity between 𝐱
and every point in 𝐴, defined as follows:

෡𝐾𝜓 𝐱, A|𝐷 =
1

|A|
෍

𝐲∈𝐴

𝐾𝜓 𝐱, 𝒚|𝐷 =
1

𝑡
< Φ 𝐱 , ෡Φ(𝐴) >

Where ෡Φ 𝐴 =
1

|𝐴|
σ𝐲Φ 𝐲 is the kernel mean map of 𝐾𝜓.

38



Point-Set Kernel (cont.)

Because ෡Φ 𝐴 can be pre-calculated, estimating the similarity between a point and a set 
points costs constant time 𝑂(1).

39



Isolation Distributional Kernel (IDK)

෡𝐾 𝑃𝑆, 𝑃𝑇 =
1

𝑆 |𝑇|
෍

𝑥∈𝑆

෍

𝑦∈𝑇

𝜅(𝑥, 𝑦)

1. As 𝜅 (Isolation Kernel) is a characteristic kernel, then its kernel mean map is injective, i.e., 

∥ ො𝜑 𝑃𝑆 − ො𝜑 𝑃𝑇 ∥𝐻 = 0 if and only if 𝑃𝑆 = 𝑃𝑇.

2. Data dependent property: Two distributions, as measured by IDK derived in sparse region, 
are more similar than the same two distributions, as measured by IDK derived in dense 
region.

- Key in improving task-specific performance

3. It has finite-dimensional feature map: ෡𝐾 𝑃𝑆, 𝑃𝑇 = 〈෡Φ 𝑃𝑆 , ෡Φ 𝑃𝑇 〉

- Key in low time complexity

40



IDK: Group Anomaly Detection

41

IDK2 : Using two levels of IDK to detect group anomalies [KDD20, TKDE22]
Level-1 maps each group to a point in Level-1 Hilbert space
Level-2 maps level-1 pts and the set of level-1 pts to pts in Level-2 Hilbert space  

K.M. Ting, B.-C. Xu, T. Washio, Z.-H. Zhou. Isolation Distributional Kernel: A New Tool for Point and Group Anomaly Detections. IEEE 
Transactions on Knowledge and Data Engineering (2022). 



IDK: Time Series Anomaly Detection
A new treatment for timeseries. This is a paradigm shift from the time domain and
frequency domain approaches that have been around for more than 100 years.

IDK is the best for periodic time series because it is more effective in detecting anomalous
subsequences that are shortened/lengthened. It also runs orders of magnitude faster because
it needs no additional process apart from the feature mapping, e.g., it only costs 661 CPU
seconds on 1 million data length.

Kai Ming Ting, Zhongyou Liu, Hang Zhang, Ye Zhu (2022) A New Distributional Treatment for Time Series and an anomaly detection 
investigation. To appear in VLDB22 42



Part 3: Deep anomaly 
detection models
• The modeling perspective

• The supervision information perspective

• Anomaly explanation in deep detectors 

43



Three Principal Categories 
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Most methods belong to this category, 
e.g., autoencoder-, GANs-, one-class models

Often more effective than the 
other two approaches

Simplest approaches

Anomaly detection-specific 
feature learning

End-to-end optimization of  
pipeline with score learning

Pang, Guansong, et al. Deep learning for anomaly detection: A review. ACM Computing Survey 54, 2, 
Article 38 (March 2021), 38 pages. https://doi.org/10.1145/3439950. arXiv preprint.

https://doi.org/10.1145/3439950
https://arxiv.org/abs/2007.02500


Categorization Based on Supervision

Unsupervised approach

• Working on anomaly-contaminated unlabeled data; no manually labeled training data

• Limited work done

Semi-supervised approach

• Assuming the availability of a set of manually labeled normal training data

• Most of current deep methods belong to this approach

Weakly-supervised approach

• Assuming we have some labels for anomaly classes, yet the class labels are partial (i.e., they do not 
span the entire set of anomaly class), inexact (i.e., coarse-grained labels), or inaccurate (i.e., some 
given labels can be incorrect)

• Limited work done

45



Main approach I: Deep learning for 
feature extraction

Leveraging existing deep models to extract low-
dimensional features for downstream anomaly 
measures
• The feature extraction and the anomaly scoring are fully disjointed

• Assumption: the extracted features preserve the discriminative 
information that helps separate anomalies from normal instances

General framework
1. Given dataset 𝓧 = 𝒙1, 𝒙2, ⋯ , 𝒙𝑁 𝑤𝑖𝑡ℎ 𝒙𝒊 ∈ ℝ𝐷, the approach is 

formulated as

2. An anomaly measure, i.e., 𝒇 that has no connection to 𝝓, is then 
applied onto the new space to calculate anomaly scores

46

𝒛 = 𝜙(𝒙; Θ)

Working purely as 
feature extraction

where 𝜙:𝒳 → 𝒵 is a deep-neural-network-based feature mapping, with 𝒵 ∈ ℝ𝐾 (𝐾 ≪ 𝐷)

Two directions: pre-trained models vs directly training deep feature extractors on the target data



Main approach II – Learning feature 
representations of normality

To integrate feature learning with anomaly scoring in some 
ways, rather than fully decoupling them as in Approach I

• Generic normality feature learning

e.g., autoencoder methods

✓ 𝝓 – encoder, 𝝍 – decoder, 𝒇 – a reconstruction error-based anomaly score

47

(𝜓 is a surrogate feature learning function, ℓ is a loss function)



Autoencoders

To learn some low-dimensional feature representation space on 
which the given data instances can be well reconstructed

• Assumption: Normal instances can be better reconstructed from compressed feature space than 
anomalies

General Framework

1. Bottleneck architecture + reconstruction loss

2. The larger reconstruction errors the more abnormal

48
Image source: Towards Data Science



Generative Adversarial Networks (GANs)

To adversarially learn a latent space that captures the 
normality underlying the given data

• Assumption: Normal data instances can be better generated than anomalies from the latent 
feature space of the generative network in GANs

General framework

1. Train a GAN-based model

2. Calculate anomaly scores by looking into the difference between an input instance and its 
counterpart generated from the latent space of the generator

49



Predictability modeling

Learn representations by using temporally adjacent instances 
as the context to predict the current/future instances

• Assumption: Normal instances are temporally more predictable than anomalies

General framework

1. Train a current/future instance prediction network

2. Calculate the difference between the predicted instance 

and the actual instance as anomaly score.

50



Self-supervised classification

Learn representations of normality by self-supervised 
classification with different data augmentation operations
• Assumption: Normal instances are more consistent to self-supervised classifiers than anomalies

General framework
1. Apply different augmentation operations to the data

2. Instances that are augmented with the same operation 

are treated as from the class, such as flipping, cropping, erasing

3. Learn a multi-class classification model using these 

synthetic class labels

4. Calculate the inconsistency of the instance to the model

as anomaly score

51
Image source: Wang, Siqi, et al. "Effective End-to-end Unsupervised Outlier Detection via Inlier Priority of Discriminative Network.“ In: NeurIPS. 2019.

Transformations Classification



Distance-based measure

Learning representations tailored for distance-based measures

• Assumption: Anomalies are distributed far from their closest neighbors while normal 
instances are located in dense neighborhoods

The general framework

1. Devise a feature mapping function 𝜙 that maps original data onto

a new representation space

2. Optimize the feature representations such that anomalies have larger

distance to some reference instances than normal instances

3. Anomaly scoring using the desired distance measure in the new space

52

Distance-based measure



One-class classification measure

Learning representations tailored for one-class classification

• Assumption: All normal instances come from a single (abstract) class and can be summarized by a 
compact model, to which anomalies do not conform

The general framework

1. Devise a feature mapping function 𝜙 that maps original data onto

a new representation space

2. Optimize the feature representations using one-class classification loss

3. Anomaly scoring using the one-class classification model in the new space

53

One-class classification 
measure



Cluster-based measure

Learning representations so that anomalies are clearly deviated from 
the clusters in the newly learned representation space

• Assumption: Normal instances have stronger adherence to clusters than anomalies

The general framework

1. Devise a feature mapping function 𝜙 that maps original data onto

a new representation space

2. Optimize the feature representations using clustering-based loss

3. Anomaly scoring using a cluster-based anomaly measure in the new space

54

Cluster-based measure



Main approach III – End-to-end anomaly 
score learning

Directly learn anomaly scores in an end-to-end fashion
• Has a neural network that directly learns scalar anomaly scores
• (surrogate) Loss functions for anomaly ranking/classification
• Generally requiring supervision of (synthetic or real) anomaly data
• Not dependent on existing anomaly measures

• Formally, the general formulation is as follows

• where 𝜏:𝒳 → ℝ is an end-to-end anomaly scoring network

55



Ranking models

Learn a ranking model that is associated with the absolute/relative 
ordering relation of the instance abnormality

Assumption: There exists an observable ordinal variable that captures some data abnormality

The general framework

1. Define the (synthetic) ordinal variable 

2. Use the variable to define a surrogate loss functions for anomaly ranking and train the 
detection model

3. Given a test instance, the model directly gives its anomaly score 

56



Prior-driven models

Impose a prior over the anomaly scores to drive the anomaly 
score learning

• Assumption: The imposed prior captures the underlying (ab)normality of the dataset

The general framework

1. Impose a prior over the weight parameters of a neural network-based anomaly scoring 
measure, or over the expected anomaly scores

2. Optimize the anomaly ranking/classification with the prior

3. Given a test instance, the model directly gives its anomaly score 

57



End-to-end one-class classification

Train a one-class classifier that discriminates whether a given 
instance is normal or synthetic outliers in an end-to-end fashion

• Assumptions: (i) Data instances that are approximated to anomalies can be effectively 
synthesized. (ii) All normal instances can be summarized by a discriminative one-class model

The general framework

• Generate artificial outliers

• Train a GAN to discriminate whether  a given instance is normal or an artificial outlier 

58

Generic GAN

Specifically 
designed 
GAN

Image source: Ngo, Phuc Cuong, et al. "Fence GAN: Towards better anomaly detection." In: ICTAI. 2019.



Softmax likelihood models

Learn anomaly scores by maximizing the likelihood of events in 
the training data
• Assumption: Anomalies and normal instances are respectively low- and high-probability events

• It is primarily designed for categorical data.Different types of interactions can be incorporated.

The general framework
1. The probability of an event is modeled using a softmax function

2. The parameters are then learned by  a maximum likelihood function

3. Given a test instance, the model directly gives its anomaly score by the event probability

59

is an anomaly scoring function



Anomaly explanation

To provide tangible explanation of why specific data points are 
considered as anomalies

60

Detector-independent outlying aspect mining Unified anomaly detection and explanation 



Unified anomaly detection and explanation 
in deep detectors

Deep methods

Data 
reconstruction

Back-
propagation

61

Feature-wise reconstruction errors for anomaly
explanation. Larger errors indicate more outlying
aspects of the anomalies.

Uses the back-propagation of gradient/activation values to 
obtain the contribution of features to anomaly scores



Data reconstruction

𝓵𝟐-distance autoencoders vs. SSIM autoencoders

62
Bergmann, Paul, et al. "Improving unsupervised defect segmentation by applying structural similarity to autoencoders." arXiv preprint arXiv:1807.02011 (2018).

Luminance Contrast Structure SSIM

𝓵𝟐-distance 

Brighter colors indicate larger 
dissimilarity between input and 
reconstruction



Back-propagation approach

This approach uses the back-propagation of gradient/activation 
values to obtain the contribution of features to anomaly scores

• Gradient back-propagation, such as Grad-CAM, is arguably the most popular method used

63
Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In ICCV, pp. 618-626. 2017.

Prediction scores (e.g., anomaly scores)

Feature maps



Guided Grad-CAM – Examples 
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Selvaraju, Ramprasaath R., et al. "Grad-cam: Visual explanations from deep networks via gradient-based localization." In ICCV, pp. 618-626. 2017.



Normality attention learning

Convolutional adversarial variational autoencoder with guided 
attention (CAVGA)

• Latent representations z preserve normal patterns

• Using attention map derived from Grad-CAM

to supervise and localize as much normal regions as

possible:
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Venkataramanan, Shashanka, et al. "Attention guided anomaly localization in images." In ECCV, pp. 485-503. Springer, Cham, 2020.

Normal training images
as input

Convolutional VAE:

GANs:

Attention expansion:
where A is the attention map gained by using the convolutional 
representations z* to back-propagate gradients as in Grad-CAM

Training:

Anomaly localization 
during inference:



Normality attention learning – Examples 

• After applying the attention expansion, the model is enforced to attend to the entire images

to look for any possible normal patterns
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Venkataramanan, Shashanka, et al. "Attention guided anomaly localization in images." In ECCV, pp. 485-503. Springer, Cham, 2020.

Anomalous attention Normal attention



Part 4: Future opportunities
and practical advices 
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Direction #1 – Exploring anomaly-
supervisory signals

Unsupervised
• Data reconstruction, generator-discriminator, pseudo class labels, etc.

Self-supervised
• Self-supervised classification, future prediction, etc.

Anomaly measure-driven
• Presuming some distribution of normal/anomalous data, e.g., one-class, cluster, distance, etc.

Are there other more effective sources of supervisory signals?

Domain-driven anomaly detection?
• Application-specific knowledge of anomaly

• Expert rules, etc.
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Direction #2 – Deep weakly-supervised 
anomaly detection

Few-shot anomaly detection or data-efficient anomaly detection

• Leveraging a few anomaly examples to perform anomaly-informed detection

• Data efficiency?

• Overfitting?

Unknown anomaly detection

• To generalize from the limited labeled anomalies to novel classes of anomaly

Learning detection models with coarse-grained anomaly labels

• How to effectively leverage such label information
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Direction #3 – Large-scale normality 
learning

Large-scale unsupervised/self-supervised representation 
learning specifically designed for anomaly detection

• Any anomaly contamination in the large-scale data?

• Knowledge transferable across different domains?

• How about different types of datasets or anomalies?
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Direction #4 – Deep detection of 
complex anomalies

Deep models for conditional/group anomalies

• Capturing complex temporal/spatial dependence 

• Learning representations of a set of unordered data points

Multimodal anomaly detection

• Excellent capability in learning feature representations from different types of 
raw data

• Flexible feature representation fusion
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Direction #5 – Interpretable and 
actionable deep anomaly detection

Interpretable deep anomaly detection

• Intrinsically interpretable deep detection models?

Actionable deep anomaly detection

• Quantifying the impact of detected anomalies and mitigation actions
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Direction #6 – Novel applications and 
settings

Out-of-distribution (OOD) detection

• Accurate classification while being able to detect any data 
instances that are drawn far away from the given training 
distribution

Curiosity learning

• Curiosity-driven exploration: Encouraging reinforcement 
learning agents to explore novel states

Non-i.i.d. anomaly detection

Detection of adversarial examples

Anti-spoofing in biometric systems

Anomaly detection in scientific data
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Montezuma’s 
Revenge

Safety in 
autonomous 
systems



Practical Advices
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No free lunch theorem

No single anomaly detector can always outperform. Even we know the *best* anomaly 
detection algorithm for a task, we need to set the hyperparameters for it. 
Consequently, we need to select for both:
• the detection algorithm and 
• its corresponding hyperparameters (default is insufficient)

It is often necessary to try many algorithms.

Han, S., Hu, X., Huang, H., Jiang, M., & Zhao, Y. (2022). ADBench: Anomaly detection benchmark. Advances in Neural Information 
Processing Systems, 35, 32142-32159.

Average AD model performance across 57 benchmark datasets.



Characteristics of Ideal Anomaly 
Detectors

Few parameters

• parameter-free the best
• Easy to tune; not too sensitive to parameter setting

Fast runtime (Scalability)

Can scale up to large datasets and high dimensional datasets

Known behaviours under different data properties (Interpretability)

Can explain the prediction results matters in many applications

Can deal with different types of anomalies
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Factors influencing a performance 
assessment

The nature of the anomaly detection problem

The data properties of benchmark datasets

The characteristics of algorithms

number of parameters, sensitivity to parameter setting, ensemble or not; how 
it performs under different conditions

Evaluation methodology

Best performance, test accuracy, AUC

A good measure in assessing the “goodness” of the ranking outcome
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Recent Advance of Model Selection
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Ensemble learning
Combining more than one ML models, leading to potentially better results and more robust
models at higher cost. Some common operations include averaging, maximization, and more.
Some of them are introduced in a later page.

Model selection
Only pick a model but it is challenging under the unsupervised setting since we could not do
any model evaluation.
• Based on internal model evaluation 
• Selecting more reliable and stable algorithms

Automating Outlier Detection via Meta-Learning
MetaOD is trained on extensive OD benchmark datasets to capitalize the prior experience so 
that it could select the potentially best performing model for unseen datasets.

Zhao, Y., Rossi, R. and Akoglu, L., 2021. Automatic unsupervised outlier model selection. Advances in Neural Information 
Processing Systems, 34, pp.4489-4502.



Further tips
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Utilising labels/domain knowledge

• If there are available labels, use (semi-)supervised models first

Jiang, M., Hou, C., Zheng, A., Hu, X., Han, S., Huang, H., ... & Zhao, Y. (2023). Weakly supervised anomaly detection: 
A survey. arXiv preprint arXiv:2302.04549.



Further tips (cont.)
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Starting from rule-based and scalable method

• Try to combine the rule-based models and ML models. Keep the rule-
based models at least use as baselines.

• Try to use rule-based models to explain ML results; try to use ML results
to discover new anomalous patterns. If possible, analyse on which 
samples they agree & disagree

• If your data is extremely large with many features, then use neural
networks

• If your data can be viewed as either tabular data and/or time-
series/graph, try tabular first.

Selecting faster tools/packages

If you have GPUs, consider using TOD other than PyOD—the former is 10x 
faster



Thank you!

Q & A
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